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A B S T R A C T   

Deep Learning (DL) algorithms are a set of techniques that exploit large and/or complex real-world datasets for 
cross-domain and cross-discipline prediction and classification tasks. DL architectures excel in computer vision 
tasks, and in particular image processing and interpretation. This has prompted a wave of disruptingly innovative 
applications in medical imaging, where DL strategies have the potential to vastly outperform human experts. This 
is particularly relevant in the context of histopathology, where whole slide imaging (WSI) of stained tissue in 
conjuction with DL algorithms for their interpretation, selection and cancer staging are beginning to play an ever 
increasing role in supporting human operators in visual assessments. This has the potential to reduce everyday 
workload as well as to increase precision and reproducibility across observers, centers, staining techniques and 
even pathologies. In this paper we introduce the most common DL architectures used in image analysis, with a 
focus on histopathological image analysis in general and in breast histology in particular. We briefly review how, 
state-of-art DL architectures compare to human performance on across a number of critical tasks such as mitotic 
count, tubules analysis and nuclear pleomorphism analysis. Also, the development of DL algorithms specialized 
to pathology images have been enormously fueled by a number of world-wide challenges based on large, mul-
ticentric image databases which are now publicly available. In turn, this has allowed most recent efforts to shift 
more and more towards semi-supervised learning methods, which provide greater flexibility and applicability. 
We also review all major repositories of manually labelled pathology images in breast cancer and provide an in- 
depth discussion of the challenges specific to training DL architectures to interpret WSI data, as well as a review 
of the state-of-the-art methods for interpretation of images generated from immunohistochemical analysis of 
breast lesions. We finally discuss the future challenges and opportunities which the adoption of DL paradigms is 
most likely to pose in the field of pathology for breast cancer detection, diagnosis, staging and prognosis. This 
review is intended as a comprehensive stepping stone into the field of modern computational pathology for a 
transdisciplinary readership across technical and medical disciplines.   

1. Introduction 

The terms Deep Learning (DL) and Neural Network (NN) have 
become ubiquitous across science and society. NN-based Artificial In-
telligence (AI) algorithms have demonstrated superior capabilities with 
respect to classical AI, especially in those tasks which require complex 
data integration and decision-making. DL algorithms are a specific 
subset of Machine Learning (ML) algorithms (in turn a member of the AI 
family), which are designed to produce a desired (typically predictive) 
output given a certain input by learning through examples, without 
explicit human intervention when determining the input features. DL 
provides the ability to analyze large and heterogeneous data and, if 
provided with enough training and information, can outperform human 

experts in many cognitive task. Accordingly, DL has generated a revo-
lution ranging from autonomous car-driving [1] to poker playing [2], 
through image recognition [3] to automated speech recognition [4], 
translation and synthesis [5,6]. Overall, DL techniques have proven to 
be particularly advantageous in image-based tasks (e.g. image recogni-
tion, segmentation and classification), and since early 2000s such ar-
chitectures have been extensively trained on data crowdsourced from 
the web. The generality and portability embedded in those tools makes 
the transition to image data from other disciplines virtually effortless, 
provided a sufficiently large database of labeled data is available for 
training. In view of the above, it has been recognized that NN-based 
algorithm are, or soon will become, the standard tool for drug devel-
opment [7], genome research [8], and medical imaging diagnosis [9, 
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10]. Indeed, major medical disciplines such as oncology [11], radiology 
[12], neurology [13] and cardiology [14] have benefited from DL 
techniques in terms of detecting aberrations, supporting diagnosis, 
guiding treatment, predicting outcome and evaluating prognosis [15]. 
Interestingly, this disruptive, transdisciplinary innovation has not come 
unexpected, and scientists as well as physicians have been speculating 
about the technological transfer of AI to biomedical fields [14] since the 
late ‘80s. However, only recently media coverage and the use of evoc-
ative terms such as “the raise of the machine” has amplified [16] to 
describe the AI-fueled revolution currently underway in biomedicine. 
The diagnostic capabilities of DL have already outperformed pools of 
board-certified human experts in terms of detection accuracy [17–19], 
with additional benefits such as reproducibility and time-efficiency. In 
addition, it is likely that DL architectures will soon be able to replicate 
the types of processes, which commonly takes place in the mind of 
medical practitioners (diagnosis formulation, therapeutic path evalua-
tion, and prognosis prediction) in a human-interpretable way. In view of 
the above, diagnostic imaging is a natural candidate for the deployment 
of DL strategies because of (i) the widespread availability of picture 
archiving and communication systems (PACS) and (ii) the fact that most 
of image data stored in PACS system is inherently labeled through the 
existence of a diagnosis. Historically, this has led to a first push of 
AI-based algorithms implemented as a computer-aided detection (CAD) 
systems for radiological image analysis employed for detecting e.g. 
pulmonary nodules [20], intracranial bleeds [21], or breast lesions [22]. 
Nowadays, however, any type of medical image can access the benefits 
of NN-based AI tools with little additional overhead. Interestingly, a 
number of tasks performed by pathologists have several commonalities 
with diagnostic radiology. The pathologist is often required to undertake 
extensive searches across a vast number of images – typically within the 
space of Whole Slide Imaging (WSI) – to extract clinically relevant in-
formation and formulate or confirm a diagnosis. In this context, the 
progressive adoption of certified whole-slide scanners and digital WSI 
infrastructure (to be contrasted with traditional microscopy [23]) has 
laid the groundwork for a fruitful adoption of automated AI-based sys-
tems [24] in the field of (digital) pathology. It is also worth mentioning 
that the steep rise of AI techniques in processing and classification of 
medical images has sparked suspicion and professional concern amongst 
medical specialists. The main concerns so far are both in the role AI 
could/should assume in shaping the future role of the professional 
practice [25], and in the degree of trust which should be placed in a 
diagnostic framework whose inner workings are (with currently avail-
able architectures), inscrutable. However, there is general agreement 
that AI tools represents more of an opportunity rather than a threat [26, 
12,27–30]. AI is poised to provide added value to practitioners in per-
forming professional tasks, by e.g. lightening the heavy-lifting workload 
and hence freeing up resources which could be dedicated to important 
aspects such as inter-professional interactions, patient-physician rela-
tionship, and in general playing a more rewarding role in the 
improvement of patient care. 

Recently, a vast number of DL approaches have been developed to 
improve decision making based on high-volume, complex healthcare 
data [31]. In the following section, we discuss the overall architecture of 
DL methods and how they differ from general ML methods. We will 
outline several DL approaches suitable for computer-aided detection in 
breast cancer, as well as several major publicly available data re-
positories of manually labelled images in breast cancer that are 
commonly employed for training DL models. As a result, we discuss the 
insight, difficulties and challenges which have resulted from recently 
intensified research efforts in these domains in general and in the filed of 
interpreting WSI in particular. 

2. DL architectures 

With respect to ML algorithms, in DL algorithms the computational 
architecture is structured in a multi-layer fashion, and each layer is 

capable of distilling, extracting and reorganizing information which is 
passed on from previous layers. 

Layers are often composed of many parallel units which perform a 
single, simple mathematical operation. As it progresses through the 
layers, the data undergoes successive abstraction processes which 
extract information. Due to the striking analogy of DL architectures to 
way mammalian perception or cognitive processes operate, the units are 
often called ‘artificial neurons’. Of note, the distinction between “arti-
ficial NN” and “DL” is often unclear: a NN-based architecture indicates a 
(not necessary ‘deep’) ML architecture composed of many simple, uni- 
operational units; if the artificial NN is organized in multiple input- 
output layers, it is termed ‘deep’. With respect to traditional ML sys-
tems, NNs and deep NNs can accomplish more sophisticated tasks, and 
with higher accuracy. On the flipside, they typically require tuning of 
many more parameters and therefore much more data to learn from. A 
complete and in-depth introduction to the principles of AI can be found 
in [32]. The procedure of tuning the parameters by analyzing example 
data is termed ‘training’. The training data is composed by the input and 
output data (the latter will be produced by the algorithm once trained). 
The input–output nature of training data is essential for the machine to 
learn the generality needed to produce the output given the ‘unseen’ 
input (input data which was not employed during training and hence to 
which the machine has never been exposed). In ML applications it is 
useful to keep part of the original dataset as a ‘test’-set, i.e. a portion of 
the ground true dataset which is set aside and ‘unexposed’ to the 
learning process. The test set can be used to obtain an unbiased evalu-
ation of the final performance of the trained algorithm. It should be 
noted that the amount and quality of training data necessary to achieve 
optimal performance is also dependent on network architecture as well 
as so called network ‘capacity’. The latter can be formally defined [33] 
and generally refers to the amount of complexity in the patterns that the 
network is able to learn. If the training data is too few with respect to the 
capacity of the network, or if it contains too many imperfections (e.g. 
artifacts), the learning process will incur in the so called “over-fitting” 
situation. In this case, the machine will not “generalize” well, i.e. it will 
perform poorly on unseen data. Importantly, the quality of training data 
may be degraded not only by artifacts, but also by ‘contamination’ of 
information from outside the training dataset. This is commonly referred 
to as ‘data leakage’. Data leakage might arise in different, more or less 
subtle forms, including e.g. from biased preprocessing of training data 
(e.g. samples from two different classes have different probabilities of 
undergoing distinct preprocessing pipelines), to improper hand-
ling/separations of training and test sets (e.g. images of the two sets 
share some degree of information, such as when biomedical images 
come from the same subject). For a non-technical discussion on data 
leakage and other problems that might render biomedical data 
sub-optimal for machine learning, see [34]. Fig. 1 depicts classical 
“learning curves” i.e. performance as a function of training data avail-
ability, for simplest ML methods, to NN-based methods and deep 
NN-based methods. The more complex the architecture, the highest 
(typically) the performance, provided enough training data is employed. 

Like any other ML algorithm, deep NNs can learn in a supervised or 
in an unsupervised way. Supervised learning uses labels (i.e. output data 
categories or attributes) which are provided available in advance. In 
unsupervised learning, also called self-organized learning, labels are 
defined without a priori knowledge about the output. As an example, 
clustering strategies – i.e. grouping observables into groups (called 
clusters) to minimize intra-group differences and maximize inter-groups 
differences – are simple forms of unsupervised learning. In [35] a 
non-technical introduction to supervised and unsupervised learning 
strategies for biomedical applications as well as other mixed strategies 
such as semi-supervised, multi-modal and multi-tasking learning, can be 
found. 
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2.1. A simple example of image analysis architecture 

In order to introduce some technical nomenclature, and for the 
benefit of the non-technical reader, before discussing more general 
classes of architectures, we now illustrate in some detail the inner 
workings of a simple and popular, network architecture termed Con-
volutional NN (CNN). 

Fig. 2 describes a very simple CNN. Neurons composing the input 
layer receive the data (see Fig. 2). Further processing then occurs in the 
‘hidden’ layers of the network, which in turn are arranged and con-
nected one to each other. The strength of a connection is called weight 
and represents the influence that one neuron, or node, has to another 
[36]. In this type of architecture, the hidden layers are commonly named 
convolutional, pooling and fully connected layers. A convolutional layer 
employs convolutional operations, e.g. a multiplication of the input by 
an array of spatially arranged weight (i.e. a ‘kernel’). In particular, each 
neuron of this layer performs this operation on a spatially clustered, 
often strictly contiguous, group of the data it receives [37–39]. A 
pooling (downsampling) layer reduces the spatial dimensions of its 
input, in order to increase computational performance and have less 
chance to over-fit the data. Pooling layers may perform different oper-
ations, such averaging or extracting a maximum [40]. In so called ‘fully 
connected’ layers, all artificial neurons are connected to each other. 
Often, the first fully connected layer within a network processes the 
features found by the previous steps of the system and applies weights to 
produce an output, i.e. in a binary classification task the fully connected 
layer will estimate the final probabilities for the input to belong to each 
of the classes. Typically, DL architectures concatenate several hidden 
layers to extract and transform the information contained in raw data 
into an output (named ‘features’) that is not initially visible in the raw 
data. In this context, the higher performance of DL systems with respect 

to typical ML algorithms are often due to the large number of hidden 
layers. While typical ML algorithms rely on one input and one output 
layer (with no more than one hidden layer between the two) DL systems 
are often characterized by a larger number of hidden layers: the larger 
the hidden part of the network, the deeper the learning [41]. 

2.2. Most common DL architectures 

Among all the existing strategies, typical/most commonly used DL 
algorithms are CNN, Recurrent NN (RNN), Restricted Boltzmann Ma-
chines (RBM), autoencoders, Adversarial Networks (AN) and Deep 
Belief Networks (DBN) [42], all characterized by different architectures 
[43]. Convolutional NNs are DL algorithms with an architecture inspired 
by the connectivity between neurons in the human Visual Cortex. These 
networks are composed by at least one convolutional layer as well as 
pooling and fully connected layers [39]. Convolutional and pooling 
layers are used to extract features, while the fully connected layers 
convert these features into a final output. CNN are often used in 
biomedical applications to recognize features in radiological images 
[39] through both supervised and unsupervised approaches. Recurrent 
NN are based on directed connections between layers and nodes which 
get updates in a discretized fashion at every time increment, or 
time-step. The ordered and directed architecture of RNNs employs the 
output from the previous step as input to the current step [44], hence 
mimicking RNNs mimic temporal dynamic behaviors. This makes RNN 
suitable to study sequences of inputs, such as timeseries (e.g. biomedical 
signals). RNN can be trained both in supervised and unsupervised 
manners. RBM are single-layer, undirected models formed by a visible 
and an hidden layer with no intra-layer connections between nodes 
[45]. The algorithm learns thanks to the probability distributions which 
are associated to the inputs through the interaction of the hidden layer 
with other units of the network. RBM can be used to implement both 
supervised and unsupervised learning methods, and they have been 
employed to e.g. discriminate between healthy subjects from patients 
affected by a number of pathologies such as e.g. cardiovascular diseases, 
diabetes, liver diseases [46]. An autoencoder is a type of unsupervised 
NN composed by visible input and output layers connected through a 
hidden layer [47]. This latter layer represents the core of the algorithm. 
An encoder maps the input onto the hidden layer, while a decoder works 
in the opposite direction, hence reconstructing the original inputs. 
Autoencoders are commonly used in medicine to label features in 
radiological images [48]. By AN we usually refer to a combination of a 
classifying network and a generative network that compete against each 
other: the generative model is trained to generate synthetic samples 
similar to some real examples, aiming to render the classifying network 
(aptly called discriminator) unable to discriminate the synthetic sample 
from the real examples. AN are most often employed in unsupervised 
learning strategies. DBN have architectures composed by different 
inter-connected hidden layers without intra-layer connections between 
nodes. Supervised and unsupervised DBN are often used as 

Fig. 1. Example performances in terms of accuracy on the test set as a function 
of available training data. Comparison between deep NN and traditional 
ML algorithms. 

Fig. 2. Typical architecture of a DL NN. The classifier is composed by several layers of neurons (circles) arranged in different visible layers (such as the input and the 
output of the system) as well as in hidden layers, responsible for the bulk of data processing. The hidden part of the system is, in turn, divided into convolutional, 
pooling and fully connected layers. 
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Computer-Aided Diagnosis (CAD) systems [49,50]. 

2.3. Assembling DL architectures 

Deep NNs are commonly designed by combining and rearranging the 
basic elementary ‘bricks’ summarized above. While a virtually endless 
number of configuration can be generated, a few archetypal arrange-
ments can be highlighted, such as CifarNet, a CNN composed by three 
convolutional and pooling layers and one fully-connected layer [40]; 
AlexNet [51], another CNN composed by five convolutional layers, three 
pooling layers, and two fully-connected layers; VGG-net [52], a uni-
formly designed CNN typically consisting of 16 convolutional layers and 
138 millions of parameters, which is often the network of choice for 
image classification when the size of the training dataset allows its 
training; GoogLeNet [53], a more complex architecture made of two 
convolutional layers and two pooling layers connected to nine so called 
‘inception’ modules where the latter are composed by six convolutional 
layers and one pooling layer each; and the so-called Residual Neural 
Network (ResNet) [54], which is similar to VGG-net, but includes 
numerous skipped connections between groups of convolutional layers 
and is generally faster to train with respect to VGG-net despite the fact 
that it may be composed by 50 to hundreds of layers. These are proto-
typical examples of general-purpose image-to-decision machines that 
can be easily tailored to specific applications by simply retraining on an 
application-specific trainingset. This process – i.e. the specialization of a 
previously trained model to a specific dataset – usually goes under the 
name of ‘transfer learning’ (see [55] for an introduction to this topic). 

3. DL in breast histology 

3.1. Introduction to the problem 

The preparation of the sample for Breast Histopathology Image 
Analysis (BHIA) (to be used by a human operator or by a computer 
software) usually occurs as follows: (i) tissue fixation (to prevent 
autolysis and putrefaction); (ii) specimen trimming and transfer to 
cassette; (iii) tissue processing, which involve dehydration, clearing, and 
embedding; (iv) sectioning and placement on the slide; and finally (v) 
staining, where the standard staining protocol is haematoxylin and eosin 
(H&E) staining. Immunohistochemical markers are also often used, e.g. 
for cancer-subtype classification and hence to support decisions about 
therapeutic strategies. Traditionally, at this point the whole slide can be 
directly observed by the histopathologist at a multi-headed microscope 
to formulate a diagnosis. However, with the advent of digital pathology, 
more and more often the glass slide is converted into a digital slide for 
WSI analysis, which can be performed by humans on-screen. Currently, 
the observation of either glass slides or digital slides by a board-certified 
human operator is the only recognized way to determine the ‘histolog-
ical truth’. It is well known however that the histological truth exhibits 
noticeable inter-individual variability, which may depend on differently 
effective search strategies, better developed eye movements, different 
cognitive processes, and other perceptual and cognitive factors [56]. It 
has been shown [57] that the three most influencing (and possibly 
non-independent) causes for diagnostic inter-individual variability are: 
(i) subtle differences in professional opinion regarding whether the 
features met the diagnostic criteria for a specific diagnosis; (ii) not 
noticing a focal finding; (iii) different diagnostic philosophies on 
whether purely morphological criteria should be used as opposed to 
incorporating additional clinical information and/or potential clinical 
impact of the diagnosis itself. Further factors such as fatigue, stress or 
variability in emotional states contribute to intra-individual inconsis-
tency in detecting and in the grading of tumors. In view of the above, the 
possible introduction of AI-guided image processing pipelines, and ul-
timately of AI-powered diagnostic systems in BHIA, is typically 
perceived as a potential improvement of medical care efficiency in terms 
of financial costs and human resources. Maybe more importantly 

computer guidance would remove the human-related variability in 
assessing the ‘histological truth’. 

3.2. Color normalization 

The spatial and chromatic distributions of H&E-stained slides depend 
on a large number of variables itself (such us staining providers, 
chemical concentration and reactivity, storage conditions, light trans-
mission on tissue), and is compounded with further variability when the 
slide is digitized due to variability in mechanical and optical properties 
of the scanners. While the human eye is able to adapt seamlessly to small 
variation of tone and contrast, DL-based image analyses can be sensitive 
to color tone distribution shifts [58–60]. In this context, two main ap-
proaches have been proposed to color-standardize histological images: 
stain color deconvolution [61] and template matching [62], both of 
which perform an image-to-image translation task [63]. Stain color 
deconvolution makes use of prior knowledge of the color vector of every 
dye [61] accrued through a manual selection of pixels which represent a 
specific stain class. This semi-supervised approach has been further 
automated (see [64] for recent developments). Conversely, template 
matching attempts to normalize the color space of the source image with 
reference to the color space of an expertly picked reference template 
image. Drawbacks and improvements are discussed in [64,58]. Also, 
very recently more sophisticated color normalization techniques has 
been developed which make use of DL and NN methods, such as CNN 
[65] or the so-called self-attentive AN [66,67]. It is however likely that 
stain normalization will be much less critical when DL algorithms will be 
trained on massively multicentric data, hence acquiring the ability to 
extract relevant histomorphic information regardless of color vari-
ability. Indeed, it has been already demonstrate that artificial color 
augmentation during DL training (a procedure which can be though of 
as also mimicking multicentric-related varaibility) improves the gener-
alization capability of CNN in some histological tasks such as mitotic 
count and cancer staging [68,69]. 

3.3. Public databases 

The advent of digital pathology has facilitated the organization of 
computational pathology contests and grand challenges. In turn, this has 
highlighted the need for publicly available, curated and labeled datasets 
which can be employed across laboratories for algorithm development. 
In turn, this has fostered the creation and training of additional DL al-
gorithms, both within or outside the scope of the challenges those da-
tabases have been created for. It is also important to point out that such 
contests and challenges are organized in such a way that the test data in 
not available to participants, and the evaluation is typically run by a 
centralized expert panel. This ensures methodological rigor and the 
absence statistically circular analyses, which would lead to inflated 
performances. Because of the pivotal role played by those databases in 
computational pathology research we briefly review past and present 
resources which are currently available in this realm. 

• The MITOS-ICPR12 challenge (2012) [70] was focused on auto-
mated mitosis detection in breast tissue. The ground truth was pro-
vided by manual annotation by expert pathologists of all mitotic 
cells. In its first version, the challenge was based on a relatively small 
amount of data (5 slides in total, 10 annotated microscope high 
power fields per slide), it not accounted for the inter-subject vari-
ability in tissue appearance and staining, and regions from the same 
slides were included in both the training and testing sets. The dataset 
was later expanded to include a total of 226 mitoses annotated on 35 
high power fields on glass slide at 400× magnification.  

• AMIDA13 (2013) [71] was also a challenge in mitosis detection in 
breast tissue, based on a notably larger dataset as compared to 
MITOS. It consisted of 23 slides from invasive breast carcinoma pa-
tients (12 patients for training, 11 patients held out for testing). 
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• GLAS (2015) [72], was a gland segmentation challenge based on 
colon histology images, which was presented at the Medical Image 
Computing and Computer Assisted Intervention (MICCAI) confer-
ence in 2015. Although not directly related to breast cancer, it 
sparked the development of several CNN architectures, which 
generally proved to be directly applicable in problems in H&S BHIA. 
The dataset used in this challenge consists of 165 images derived 
from 16 H&E stained histological sections of stage T3 or T4 colo-
rectal adenocarcinoma. Each section belongs to a different patient, 
and since they were processed at different times, the dataset exhibits 
inter-subject variability both in stain distribution and tissue 
architecture.  

• MITOS-ATYPIA-14 (2014) [73] was a challenge composed of both a 
mitosis detection contest, and, separately, of an evaluation of nuclear 
atypia score (assessed through the Nottingham Grading System 
(NGS) by both senior and junior pathologists), and it was based on an 
update of the MITOS challenge. The training set contained 284 
frames extracted from ×20 magnification and 1136 frames extracted 
from ×40 magnification.  

• CAMELYON16 (2016) [74] was a challenge for automated detection 
of metastases in WSI of lymph node sections. With respect to previ-
ous challenges, the organization of CAMELYON16 marked a steep 
increment in the volume of data AND consisted of a total of 400 WSIs 
(including both training and testing data) and an equivalent amount 
of masks which defined the annotation of metastatic regions. The size 
of the CAMELYON16 challenge data-set allowed the training of very 
deep models such as a 22-layer GoogLeNet [75], 16-layer VGG-Net 
[52], and 101-layer ResNet [54].  

• TUPAC16 (2016) [76] was a challenge to predict tumor proliferation 
from WSI. The challenge consisted of two separate tasks: (i) to pre-
dict mitotic scores based on manual labels generated by expert 
pathologist; (ii) to predict gene expression-based PAM50 (Pro-
signa-(r)) proliferation scores. The challenge dataset consisted of 500 
training and 321 testing breast cancer histopathology WSIs, with a 
small overlap with the AMIDA13 dataset. Successively, the 
PATCHED-CAMELYON16 (2017) [77] database was generated by 
repackaging and streamlining CAMELYON16 data. It consists of 
327.680 color images (96 × 96 pixel) where each image has a binary 
label indicating presence/absence of metastatic tissue. 
PATCHED-CAMELYON16 provides also a ready-to-train deep NN 
model which can be executed on a single GPU, and allows very fast 
algorithm deployment without the burden of SWI management. 
However, since it was not released in form of a challenge, no inde-
pendent review of results obtained across the research community is 
available.  

• CAMELYON17 (2017) [78] was a challenge for automatic detection 
and classification of breast cancer metastases in WSI of histological 
lymph node sections. With respect to CAMELYON16, which was 
centered on metastases recognition, CAMELYON17 is focused on the 
patient-level analysis and hence aims to provide a higher clinical 
relevance. The challenge consists in merging the information obtain 
by detection and classification of metastatic sites in multiple slides, 
each obtain from a surgically removed lymph node, and provide a 
single outcome in form of a pN-stage (which, according to the so 
called TNM staging system [79], evaluates whether the cancer has 
spread to the regional lymph nodes).  

• BACH (2018) [80] was a challenge for breast carcinoma detection 
and labeling from H&E stained microscopy images. The challenge 
consisted of two separate tasks: (i) automatically labeling H images 
according to four classes (normal, benign, in situ carcinoma and 
invasive carcinoma); (ii) performing pixel-wise labeling of the same 
images (same four classes). Participants were provided with 100 
images for each class (for a total of 400 images, each 2048 × 1536 px 
in size). 

4. AI for assessing predetermined clinical criteria 

4.1. Clinical tasks 

The assessment of histological tumor grade is a key step in prognostic 
evaluation in oncology. Tumor grading is currently based on visual 
assessment of the morphological characteristics of tumor tissue. This 
assessment is semi-quantitative, i.e. the expert pathologist provides 
various indicators such as the approximate percentage of mitotic cells, 
or abundance and the staining intensity of tumor tissue, all of which, 
however, are generated by visual inspection. Various international sci-
entific boards-such as the World Health Organization (WHO),1 the 
American Joint Committee on Cancer (AJCC),2 the European Union 
(EU), and the Royal College of Pathologists (UK RCPath)3 – recommend 
the NGS [81] for tumor grading based on visual inspection of the his-
tological sample. The NGS, estimates tumor grade on a scale from 1 to 3, 
and is based on the assessment of three morphological features: (i) de-
gree of tubule or gland formation, (ii) mitotic count, and (iii) nuclear 
pleomorphism. The NGS has a number of advantages: it is simple, 
inexpensive and provides a proven prognostic value (see [82] for a re-
view). Research targeted towards the intelligent automation of 
image-based tumour grading has therefore flourished. 

4.2. Mitotic count 

The MITOS-ICPR12 and the AMIDA13 challenges provided high 
quality, multiple-observer-labeled data. As such, it generated a research 
spurt in the field of creating automating mitotic count algorithms. 
Mitotic count is conventionally performed within an area of 2 × 2 mm2 

and provides a proxy for tumor aggressiveness. Mitotic cells appear as 
hyperchromatic objects without a nuclear membrane; further, they 
usually exhibit specific shapes which are rare in other cells. A major 
breakthrough in automated mitosis count was delivered by Ciresan and 
co-workers [83] who capitalizing on their previous experience [84,85] 
provided a major milestone in AI mitotic count detection. Their method 
was built by averaging the result of several independently trained CNN 
feed-forward architectures. Each architecture was composed by 10 to 12 
layers. The main innovations were (a) the introduction of max-pooling 
layers which, at that time, were being investigated in the 
computer-vision community [86] (feed-forward CNN with max-pooling 
layers are now considered the de-facto standard when building a CNN 
architecture from scratch) and (b) the reduction of variance by aver-
aging the probabilities of several independently trained CNNs. This 
approach led them to win both the MITOS-ICPR12 challenge and the 
AMIDA13 challenge [87]. The proposed method reduced the complexity 
of previously employed CNNs (both in terms of number of layers and of 
number of overall parameters), by introducing a combination of CNN 
and handcrafted features. The workflow consisted in applying extraction 
of handcrafted features on mitosis candidates via a random forests 
classifier and evaluating the same patch via a CNN; in case of 
non-concordance, a second-stage random forests classifier was 
employed on CNN-derived and handcrafted features; the final decision 
was made by numerical consensus across all three classifiers [87]. This 
work demonstrated that an integrated approach made of a classical 
ontology (distinctions in intensity, shape, texture) and a NN-derived 
ontology (unintelligible by humans) resulted in superior detection per-
formances as well as in less computationally demanding workflow. 
While MITOS-ICPR12 and the AMIDA13 challenge are closed for sub-
mission, the availability of the dataset continue to spark interest in the 
development of automatic mitotic count, and the reported detection 
performances are steadily increasing, although at a lower incremental 

1 www.who.int.  
2 www.facs.org.  
3 www.rcpath.org. 
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rate. Virtually all of the most successful DL approaches are based on a 
combination of the two key ingredients: (i) the use of max-pooling CNN 
layers and (ii) the inclusion of classifiers which use handcrafted features 
(see for instance [88–93]). In [94], one can find an in-depth review of 
the most successful approaches presented since the introduction of the 
MITOS-ICPR2012 challenge. Also, the approach by [95] represents a 
notable exception. The authors employ a NN architecture called AggNet, 
which is designed to capitalize on information from “crowdsourced” 
data. Crowdsourcing is a practice for collecting data from participative 
online activity of individuals. While it was initially introduced as market 
research strategy, it can be exploited to recruit large crowds for tedious 
and time-consuming tasks, especially in the field of visual recognition 
and labeling. Authors of [95] attempt to understand whether the labels 
generated from non-expert users (which inevitably lead to noisy anno-
tations) can be employed in a massive scale to train a deep CNN. Their 
results confirm that training from crowdsourced annotation for mitotic 
count is robust to noisy labels, opening new perspectives for future 
channels of information that NN architectures will be trained on. 

4.3. Tubules analysis 

The morphology of tubules is another proxy for cancer aggressive-
ness. With cancer progression, the tubules become less organized and 
deviations from a semi-circular section occurs. Analyzing the structure 
of the tubules can therefore improve the accuracy of cancer staging as 
well as of prognosis formulation. However, from an AI perspective, this 
problem of recognizing and segmenting a tubule is fairly complex. Once 
the tubule is correctly segmented, features like its shape, area and size 
can be employed by a downstream classifier. In [96], the authors use a 
DNN architecture to delineate the tubules by detecting both the margin 
of the lumen and the external tubule margin. Successively, another CNN 
detects and counts the nuclei between the two margins, hence extracting 
an index called tubule formation indicator. This index is then used to 
predict the oncotype DX test in a cohort of 174 patients. In [97] 
Janowczy and coauthors discuss and provide a tutorial for tubule 
detection with DL approaches. While tubule analysis with DL has not 
attained the status of an independent tool to improve diagnosis accu-
racy, it is being tackled with extremely deep NN as well as transfer 
learning [98], and it has been included in a more comprehensive 
framework for tumor detection and staging. 

4.4. Nuclear pleomorphism 

The term nuclear ‘pleomorphism’ comprises irregularities in nuclear 
shape, nuclear size, and changes in chromatin amount and distribution. 
The presence of large pleomorphisms is an indicator of cancer, and pa-
thologists asses it through a dedicated score which contributes to the 
formulation of a diagnosis. Still, systematic differences between pa-
thologists in scoring nuclear pleomorphism have been reported [99]. 
Interestingly, the analysis of nuclear shape deformity may overlap with 
the task of mitotic count. In detail, analyzing nuclear shape may 
contribute to mitigating a certain classification bias in mitotic and 
non-mitotic nuclei classification. For instance authors of [100], used 
global binary thresholding on blue ratio images to develop a two-phase 
CNN: phase-1 was used to discriminate between easy, normal, and hard 
non-mitoses; hard mitoses where then heavily augmented by flipping 
and rotations before being passed on to phase-2 classification to 
compensate for class imbalances. An example of an efficient deep NN 
architecture, based on stacked sparse autoencoder (SSAE) and dedicated 
to nuclear pleomorphism detection, has been proposed in [101]. The 
authors showed that deeper SSAE outperform “shallower” architectures 
in terms of nuclear detection accuracy. Other architectures proposed for 
nuclear pleomorphism include the ones proposed by authors of [102], 
which demonstrated that accurate measurements of individual nuclear 
area as well as regional statistics such as the mean nuclear area can be 
obtained directly via deep CNN models, hence bypassing the 

intermediate step of nuclei segmentation. Also, authors of [103] pro-
posed the use of a ‘shape-preserving’ learning approach for automatic 
nucleus segmentation, where a CNN generates a ‘shape’ probability map 
which is iteratively improved and successively fed to segmentation al-
gorithm which employ selection-based sparse shape models and local 
repulsive deformable models. 

4.5. Himmunohistochemistry 

Immunohistochemistry (IHC) is a staining method which employs 
antigen-specific antibodies, and it is routinely employed in breast cancer 
diagnosis. Many IHC staining targets are relevant in breast cancer. A 
non-exhaustive list includes e-cadherin (used to differentiate ductal 
from lobular carcinoma), 34βE12, CK8, CK5/6, p120-catenin and 
β-catenin, calponin, smooth muscle myosin heavy chain, p63, Ki-67, 
human epidermal growth factor receptor 2 (HER2), hormone receptors 
and lymph-vascular invasion markers including ERG, CD31, CD34, 
factor VIII and podoplanin. Also, since the monoclonal antibody tras-
tuzumab (Herceptin) has become available, which provides an effective 
(albeit expensive) treatment for HER2-positive breast cancer, IHC 
staining for HER2 has entered common diagnostic practice [104]. For a 
brief review of current IHC trends in breast cancer see [105]. The scoring 
method for HER2 IHC is semiquantitative and is based on 4 classes, or 
scores, called 0, 1+, 2+ and 3+ respectively. Score of 0 and 1+ are 
considered HER2-negative and correspond to no staining to weak, 
incomplete, membrane staining or else weak and complete staining in 
less than 10% of invasive tumor cells. A score of 2+ is considered 
HER2-equivocal and corresponds to circumferential membrane staining 
that is incomplete and/or weak/moderate in more than 10% of the 
invasive tumor cells. A score of 3+ is considered HER2-positive and 
corresponds to circumferential membrane staining that is complete and 
intense in a homogeneous and contiguous population in more than 10% 
of invasive tumor cells [106]. Because of the clinical benefit of an 
anti-HER2 therapy, high accuracy in identifying HER2+ tumors is 
crucial. Still, current standards in HER2 scoring are affected by high 
variability [107–111], with an estimated false positive rate of 4% and a 
false negative rate as high as 18% [112]. 

One of the earliest attempt to introduce DL algorithms in HER2 
assessment can be found in [113], where authors proposed a DL 
approach based on CNNs to automatically “score” HER2 (see Fig. 3). The 
algorithm consisted of 3 convolutional layers followed by fully con-
nected layers, and it significantly outperformed other ML methods such 
as linear Support Vector Machine (SVM) and Random Forest (RF) 
models. Further, a blind and independent scoring of some previously 
scored cases combined with controlling for intra-operator variability by 
re-scoring a second time after a washout period, demonstrated the 
ability of DL methods to identify possible misdiagnosis in HER2 staining. 

5. From criteria-based clinical assessment to morphological 
feature extraction, classification, grading and subtyping 

The first applications of DL-based methods in pathology were mainly 
aimed to compute predictors and descriptors based on classical cate-
gories for tumor assessment (e.g. mitotic count, tubule analysis, nuclear 
pleomorphism). More recently however, research efforts have shifted 
towards a more direct approaches. Since the primary question remains 
tumor detection and its contouring on WSI, this task has become the 
natural endpoint the most recently proposed algorithms. In this new 
paradigm, the AI architecture may be trained to reproduce the evalua-
tion of a panel of expert pathologists about the presence as well as 
subtyping of abnormal tissue. This means that classical descriptors used 
in tumor assessment (which are defined and used by human operators) 
are fully bypassed, and the DL algorithms is tasked with building its own 
(often inaccessible) descriptors as an integral part of the training pro-
cess. An example of this approach is provided in [114], who trained 
several DL architectures using WSI data from 349 estrogen 
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receptor-positive invasive breast cancer patients collected in multiple 
sites and digitized on different scanners. The data included annotations 
by expert pathologist who manual delineated invasive breast cancer 
regions. The authors demonstrated the ability of their DL method to 
automatically detect invasive breast cancer from whole slide histopa-
thology images (see Fig. 4 for an example). Of note, the authors of [114] 
reported that out of three DL architectures (3-layer, 4-layer, and 6-layer 
ConvNet) models, the 6-layer ConvNet model performed marginally 
better that the 3-layer ConvNet model, which in turn performed better 
that the 4-layer model. This clearly indicates a non-trivial relationship 
between the depth of the DL architecture and its performance. In gen-
eral, DL-based AI may be able to extract information from H&E stained 
histological samples that is not accessible to the human operator by 
visual inspection. Such information could potentially be related to bio-
logical variables with strong clinical relevance such as e.g. receptor 
status or intrinsic tumor subtype. Authors of [115] combined a color 
normalization technique with the training of a large CNN via transfer 

learning, demonstrating that it is possible to predict, tumor grade, ER 
status, PAM50 intrinsic subtype, histologic subtype, and risk of recur-
rence score from an H&E stained breast tumor tissue microarray. While 
prediction accuracy varied as a function of tumor grade, the overall 
message was that combining the “right” DL-architecture with sufficient 
amount of data for training allows to extract information that typically 
requires costly RNA-based, multi-gene molecular assays from H&E 
stained samples alone. While RNA-based genomic tests still provide 
superior accuracy, DL-based image analysis could therefore be 
employed for e.g. triaging candidates for genomic testing. 

5.1. Weakly supervised systems and external validation 

The classical DL approach in WSI analysis has been that of supervised 
learning: large amount of well-labeled data are employed to train the AI 
system to reproduce, with the highest possible accuracy, the output 
commonly produced by humans. In other words, the AI is constrained to 

Fig. 3. The HER2 status of invasive breast carcinoma as determined automatically by DL. WSI analysis classifies the percentage of 3+, 2+, 1+ and 0 tumor cells 
present in the total population. Reproduced with permission from [113]. 
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Fig. 4. (A–C) Example WSI and corresponding ground truth annotation (reproduced with permission from [114]. (D–F,G–I): probability maps generated by two 
different ConvNet classifiers as described in [114]. 

Fig. 5. The MIL training procedure presented in [119]: a deep NN is first trained to output a semantically rich tile-level feature representation. The highest scoring 
tile in terms of tumor probability is passed to a second stage recurrent NN to predict the final slide-level class. Adapted with permission from [119]. 
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predicting functional categories which are pre-existing in the human 
mind. In a different approach, the AI can “learn” (i.e. define) its own 
categories, which would live in the space of its internal-state represen-
tation of the inputs, and employ those to predict clinically relevant 
output. Provided a large enough database of clinical cases is available, 
this would render tedious and labor intensive manual annotations at the 
pixel level unnecessary, since the output (e.g. therapeutic response) 
would be the natural end-point to be predicted by the AI system. Such 
strategies that circumvent the need of costly and time-consuming hand- 
labeled training sets are indicated with the umbrella term of ‘weakly 
supervised’ learning. Early proposers of this approach [116] demon-
strated that weakly supervised histopathology segmentation is feasible 
even without patch-level annotation. The authors employed (for the first 
time in computational pathology) a learning method termed Multiple 
Instance Learning (MIL) (see [117] for a review). In the context of breast 
cancer, this type of DL model was trained to predict response to 
HER2-targeted therapy given the pre-treatment breast Magnetic Reso-
nance Imaging (MRI) [118]. The same type of approach has been pro-
posed by authors of [119] in the context of digital pathology (not limited 
to breast cancer). The authors assembled a large database consisting of 
(i) 24,859 slides from prostate core biopsies, (ii) 9962 slides from a skin 
lesion dataset and (iii) 9894 slides from breast metastases in lymph 
nodes. Since manual annotation was not feasible due to the size of the 
dataset, classical supervised learning could not be employed. Instead, 
the authors proposed a weakly supervised approach which leverages the 
readily available slide-level diagnosis (see Fig. 5). In a MIL framework, a 
deep NN was first trained to output a semantically rich tile-level feature 
representation. Then, given that a positively diagnosed slice contains at 
least one positive tile, the tile-level feature representation was used to 
train a secondary RNN to predict the final class. It should also be noted 
that, given the large amount of variability originally present in the data, 
no augmentation techniques were employed. This work [119] likely 
represents a milestone in computational pathology for several reasons: 
(1) it demonstrated a that pixel-level annotation can be bypassed, (2) the 
approach can be generalized to provide multiple diagnoses, inspiring the 
concept of multi-type and multi-subtype cancer diagnostics, or “pan--
cancer” DL diagnosis (the latter term was recently introduced in [120], 
where 30,000 WSI from 25 primary anatomic sites and 32 cancer sub-
types where used to train a ‘consensus’-based DL diagnostic tool), (3) the 
algorithm has broad tolerance to image quality levels, and it is robust to 
artifacts introduced during fixation, tissue-processing, slicing or stain-
ing; (4) it can also be generalized to extract, from WSI, biomarkers 
relevant to other clinical questions, such as response to a specific ther-
apy or 10-years cancer-free survival probability. 

6. Conclusions, challenges and future trends 

It is likely that in the very near future DL-based algorithms will tend 
to be more and more general, substantially independent from anatom-
ical site as well as scale-agnostic (two recent scale-agnostic DL-based 
algorithms have already been proposed [121,122]) and even perform 
cross-species. The authors of [123] demonstrate that cross-species his-
tology transfer learning leads to a richer feature representation for 
performing DL on human tissue. This paves the way for pan-cancer, 
pan-tissue, cross-species general-purpose high-performing models for 
lesion classification. A futuristic, but not unlikely algorithm will be able 
to provide a patient-specific therapeutic strategy and evaluate 
patient-specific survival probability by analyzing WSI, possibly in 
conjunction with additional multi-domain clinical information available 
at diagnosis time. 

Interestingly, the fast paced research in AI-assisted digital pathology, 
and the exponential output in terms of methods and research papers, has 
not been accompanied by the introduction of DL in clinical practice. This 
may partially be due to the non yet ubiquitous adoption of digital WSI 
(which is itself still under development) and dedicated processing 
hardware. Perhaps more importantly, internationally recognized and 

algorithmically approved workflows are still missing (for reference, see 
the recently proposed regulatory framework by Food and Drug 
Administration (FDA) for the approval of AI methods in clinical routine 
[124]). In turn, this crucial step would require the availability of very 
large, annotated multicentric databases. 

As architectures becomes more and more complex, another impor-
tant limitation may be the loss of interpretability of the model’s inner 
workings. The design of highly complex, deep NNs has created a new 
“black box” problem [125]. While this may not be crucial in a number of 
other applications, in medical disciplines the decision making process is 
closely tied to questions of accountability, as well as of regulatory and 
ethical nature. In this sense, the strive for model performance should not 
eclipse the attention for model transparency. As a result, some authors 
[125] advocate the exclusive use of high-level abstraction of those at-
tributes which have been associated with prior knowledge by human 
experts, even if this comes with a detriment in terms of classification 
accuracy. An opposite strategy (which would not per se compromise in 
terms of classification accuracy) would be to focus on AI systems which 
are explicable by design. Such architectures are currently under devel-
opment in the computer science community [126,127]. In computa-
tional pathology, inherently self-interpretable models may be based on 
techniques like tile-level captioning [128], saliency maps [129] or visual 
attention maps [130,131]. An additional caveat is represented by 
operator “deskilling”: some authors [132] argue that reliance on auto-
mated DL-based decisions could result in the gradual loss of human 
diagnostic skills, hence exposing the system to potential disruptions in 
case of technological failure [133]. While it is important to note that the 
history of medical innovation, and any technological innovation in 
general, has inevitably brought some degree of human deskilling, some 
authors also note that technological progress in medicine has a generally 
negative influence on patient-practitioner communication [134]. 
Further it should be kept in mind that the adoption of DL-based decisions 
making systems typically requires high-performance computing infra-
structure to develop/implement AI algorithms. To-date, this may 
represent an economic barrier in the less economically developed 
countries. In this respect, cloud solutions, where the bulk of computa-
tion time is rented, may aid in faster and cheaper deployment. 

In summary, there is little doubt that DL will grain significant ground 
in biomedical sciences and medical practice, and pathology is no 
exception. A recent paper [135], demonstrated statistically that the 
speed of adoption of DL technologies is driven by high rates of mortality 
of some types of cancer, suggesting an imminent shift of technological 
paradigm for diagnostic assessment. Given to the relatively high mor-
tality rates in breast cancer, the adoption of DL is likely to advance 
quicker as compared to other contexts. Further socioeconomic factors, 
such as e.g. the lack of an adequate number of pathologists in developing 
countries [136], as well as the ever-increasing workload in the context of 
histological diagnoses (which may also lead to an emergent workforce 
crisis [137] even in developed countries), will likely drive a digitization 
of healthcare services, which in turn will further ease the introduction of 
computer-assisted decision making in medicine. 
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B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer, M. Urschler, D.R.J. Snead, N. 
M. Rajpoot, Gland segmentation in colon histology images: the glas challenge 
contest, Med. Image Anal. 35 (jan) (2017) 489–502. 

[73] https://mitos-atypia-14.grand-challenge.org/. 
[74] B.E. Bejnordi, M. Veta, P.J. van Diest, B. van Ginneken, N. Karssemeijer, 

G. Litjens, J.A.W.M. van der Laak, M. Hermsen, Q.F. Manson, M. Balkenhol, 
O. Geessink, N. Stathonikos, M.C.R.F. van Dijk, P. Bult, F. Beca, A.H. Beck, 
D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H.- 
J. Lin, P.-A. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M.Ü. Öner, R. Cetin- 
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